
APPROXIMATE SOLUTIONS OF NONSTATIONARY JUNCTION HEAT- 

EXCHANGE PROBLEMS FOR LAMINAR FLUID FLOW IN CHANNELS 

V. A. Kudinov UDC 536.247:518.61 

Through the combined use of the double-integral Laplace-Carson transform and 
the Bubnov-Galerkin orthogonal method, a solution is obtained of a junction 
heat-exchange problem for rectilinear fluid flow. 

A theoretical basis of the need for solving junction heat-exchange problems was presen- 
ted in [i] by A. V. Lykov and T. L. Perel'man. P. V. Tsoi [2, 3] developed an approximate 
analytical method for the study of heat exchange in laminar fluid flow. In the present paper 
we extend this method to the solution of nonstationary junction heat-exchange problems. 

Let two distinct fluids move with identical speeds in plane-parallel channels separated 
by a thin partition. We neglect the thermal conductivity of the channel walls and of the 
partition. The fluid flow is laminar. We assume that on one of the outside walls there is 
no heat exchange, while on the other wall a boundary condition of the first kind is speci- 
fied. On the contact zone of the two media junction conditions in the form of equality of 
temperatures and thermal flows are satisfied. 

The mathematical statement of the problem is the following: 

OTI(p, z, Fo) + [ 1 _ _  p ~ p OTI(p, z, F o ) = , a ,  O~Tl(p, z, Fo) (1) 
0Fo k p~ ] p~ Oz a Op ~ ' 

OT ,O,z, § a2o , 

T~ (O, z, 0) = r~, (i = ~, 2), (3)  

T~(p, 0, F o ) =  To~ (i = 1, 2), (4) 

OT~(O, z, Fo)/0p = 0, (5) 

T,(p~, z, Fo)- -T2 (p .  z, Fo), 

)hOTt(p~, z, Fo)/Op = %~0T~(p~, z, Fo)/0p, 

r2(1, z, F o ) = r  w,  

(6) 

(7) 

(8) 

where 

F o = - - ~ ,  z =  Pe R '  a r~ 

Wz(r)= 6Wav ( I r~r--r~ )( r--r----~-A-1) r l  rz - -  r l  

To solve the problem (1)-(8) we employ the double integral Laplace-Carson transform 
along with the Bubnov-Galerkin orthogonal method. 
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We apply the Laplace-Carson double integral transform with respect to the dimensionless 
time Fo and with respect to the coordinate z. To this end we let 

T* = ps.[ T (p, z, Fo) exp [ - -  (p Fo § sz)] d Fo &.  
o 0  

In  t h e  t r a n s f o r m  domain we can w r i t e  p ro b l em  ( 1 ) - ( 8 )  as  f o l l o w s :  

p[T;(p,s,p)--~,]+s( p p~)[~;(p, s,p)__Tol] a, O ~ T ; ( p ' s ' P )  =0,  (9)  
�9 Pl P~ a Op ~ 

~; I~, ~. ~ -  ~,,~ §  [", _- ~. ~' ~,/~ ~"'/~ ] ~; ~.,., ~ _  ,,o~_ ~_o ~v; ~,~ ~. ~/ _- 0. ~0 

ate; (o, s, p)lap = o, 

P;'(p. s, p ) =  f :  (p,, s, p), 

~.zaf; (p .  s, p)tap = ~.a?;  (p,, s, p), 

r~ O, s, p )=  r~,. 

( i i )  

(12)  

(13) 

(14) 
In accordance with the Bubnov-Galerkin method we apply a first approximation to the problem 
(9)-(14) in the form 

T~(p,  s, p ) = T  w + b l ( s ,  p)%z(p) ( i =  I, 2). (15 )  

We t a k e  as  o u r  c o o r d i n a t e  f u n c t i o n s  t h e  f o l l o w i n g :  

~ n ( p ) =  | - -  . --f--" ( l - -p2) ,  (16) 

%~ (p) = 1 -- p2. (17)  

When r e l a t i o n s  (16 )  and (17)  a r e  t a k e n  i n t o  a c c o u n t ,  t h e  e x p r e s s i o n  (15)  s a t i s f i e s  t h e  
b o u n d a r y  c o n d i t i o n s  (11)  and (14 )  and t h e  j u n c t i o n  c o n d i t i o n s  (12)  and ( 1 3 ) .  

To obtain the unknown transform coefficient bz(s , p) we form the residuals of the differ- 
ential equations (9) and (I0) and require the orthogonality of the residuals to the co- 
ordinate functions (16) and (17): 

?'[ ( p (T w + b/pn - -  Ti ~) + s P 
Pl 

P* 

(p - -  p,)~- ] (Tw (1 - -  p l )  ~ 

P~ ' (Tw + blqhl - -  Toj) - -  

:- blqh~ - -  Ti .,.) H- s [ p - -  Pl 
[ 1 - -  P ,  

+ b l ~ l ~ - - T o l ) - -  as bl %2@ = O. 
a Op ~ J 

Upon determining the integrals for the unknown coefficient b1(s, p), we obtain the for- 
mula 

b~(s, p) = pF~ --k sF2 (18)  
PG § s& + & ' 

where 

Pt 1 

Fz =: (Til  - -  Tw,) ~" %,dp -1- (Ti2 - -  T w ) J' cP,2dP; 
0 pj. 
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e, ) 
(to,-- )t ( p = %~dp q- (To~ - -  Tw ) • 

o (h 9~ J 

{ ] ~ , 
• f ! F.::/ .[d eo; 

�9 I - -  Pl ( 1  - -  p : ) a  
p~ ~ 0 Pl 

P' ( P fJ" ) 2{pl ldP -r-' ff[ P---~l (P--Pl)S ] (~12 p;2  
F , :  i Pl P~ l--p1 (l--pO ~ 0 p, 

F5 (21 Ca 02qOll a2202(~1 '  " 
a b OP ~ qhldo--  T v I = a p "  a Pt 

In the space of the originals the solution of the problem becomes 

(p, z, F o ) =  [ (i = 1, 2) 

T w e x p ( - -  Fs gtqDai(p) for  z <  Fo. F~ 

t F~ \ F4 } F3 

(19) 

In Eqs. (19) the top equation coincides with the approximate solution of the problem (1)-(8) 
when the convective terms in Eqs. (i) and (2) are equated to zero (the second terms on the 
left side of these equations), i.e., with the solution of the nonstationary heat-conduction 
problem for the contact of two bodies. 

In fact, if we put Til = Ti2 = T i, X~ = XI, al = al, the top equation of Eqs. (19) re- 
duces to the form 

TI(p, Fo) = T w + 1 , 2 5 ( T i - -  T ) e x p ( - -  2 ,5Fo)%(p) .  

This expression is in complete agreement with the solution of the nonstationary heat-conduc- 
tion problem in the first approximation given in [2]. 

It will be shown later that the bottom equation of Eqs. (19) is in complete agreement 
with the approximate solution of the corresponding stationary problem, i.e., when the first 
terms on the left side of Eqs. (1) and (2) are equated to zero. 

Thus, for regions of the heat exchanger as yet unperturbed, the heat exchange due to the 
initial fluid temperatures T01 and T02 at the channel entrances (for z = 0) takes place as 
it would in a stationary fluid, i.e., heat transport occurs through heat conduction only. 

For heat exchanger regions subjected to the influence of thermal conditions at the 
channel entrances (fluids, formerly at the channel entrance, having reached these regions) 
the heat exchange does not depend on the initial conditions Til and Ti2 (for Fo = 0). The 
heat exchange in this case does not depend on the time and is completely determined by the 
flow of the media, i.e., the problem becomes a stationary one with convective heat transfer 
along the z axis taken into account. 

We carry out the following approximations separately for the nonstationary and the 
stationary problems [2]. 

To solve the stationary problem we use the orthogonal method of Kantorovich. In the sys- 
tem of equations (1)-(8) one must equate to zero the first terms on the left side of Eqs. (i) 
and (2). Following the method of Kantorovich, we seek a solution of the stationary problem 
in the form 

Tn~(p, z) = T w -? ~fh(Z)~hi (p) ,  (20)  
k=l 

where  n i s  t h e  number o f  t h e  a p p r o x i m a t i o n s ;  f k ( z )  i s  an unknown f u n c t i o n ;  ~ (p )  a r e  co -  
o r d i n a t e  f u n c t i o n s .  

The c o o r d i n a t e  f u n c t i o n s  o f  t h e  f i r s t  a p p r o x i m a t i o n  a r~  o b t a i n e d  f rom e x p r e s s i o n s  (16 )  
and ( 1 7 ) .  C o o r d i n a t e  f u n c t i o n s  o f  t h e  f o l l o w i n g  a p p r o x i m a t i o n s  C v i ( P )  (k = ~ a r e  ob -  
t a i n e d  in  a c c o r d a n c e  w i t h  t h e  e x p r e s s i o n s  ~ l ( p )  = (p2 _ p l = ) = p l ( I ~ - l ) ,  r  = (p2 _ 1)2 
(p2 _ pla)2(k-1) (k = 2, n). 
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Fig. i. Variation of the 
temperature in plane-paral- 
lel channels (z < F4Fo/F3): 
Curves labeled i, 2, 3, and 
4 are for the z-values 0.i, 
0.05, 0.03, and 0.01, res- 
pectively. 

To find the solution in the first approximation, we form the residual of the differen- 
tial equations and require that it be orthogonal to the coordinate functions ~ti(p) (f=1, 2): 

[0!?( :I ] p pj. a 0p" tPlldp -~- 

If in Eq. 

where 

(21)  

+ 1 T12 (p, z) " %~.dp = 0. 
I - -  Pl 1 - -  Pl • OP 2 DI \ 

(21)  we r e p l a c e  T l l ( p ,  z)  and T I = ( 0 ,  z)  by t h e i r  v a l u e s  f rom Eq. ( 2 0 ) ,  we f i n d  

N~ Of~ (z_.___~) + N2f~ (z) = 0, (22)  
Oz 

~ ) N I =  [ I-- P ,P  
6 Pl Pl 

Ng~ = -  a l  ~?* 0 2 q ) l l  

a i] OP ~ 

q)~ldp+ ] ( 1  9 - - 9 1 ) ( 9 - - 9 1 ) 1  -- 1 2 d  �9 q?12 P;  

o, - -  p~ - -  Pl 

- -  %2d9. - - q ~  a p, 

C1exp(--vz), where v = N2/N I. 

(4): 

=0. 

The general integral of Eq. (22) is fl(z) = 

We find the integration constant C I from the initial condition 

Pt I 
,[ ( r  w - -  TD1 -3[-- C1(~11),l ldp -~- j" (T w -  To~ + C,%~)%2dP 
0 p, 

From this we obtain 

C 1 

O~ 1 

( T o l -  T w )f (Plldp + (To~--- T w ) J" (pl,dp 
o 9~ 
p, 1 

q h l d p +  ~" qol: p i" 2 2 d 
g o~ 

The solution of the problem in the first approximation may be described by the expres- 
sion 

T~ (p, z) = T~ + C~ exp ( - -  ~z) r (P). 
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By way of example, we find the solution of a specific problem for the following initial 
conditions: r I = O.O08m; r 2 = 0.016m; a~ = 6"10 -8 m2/sec; a 2 = 12"10 -6 m2/sec; ~i = 0.ii W/ 
~m; ~2 = 0.43 W/um; T01 = T0= = T o > T w. 

The relative surplus temperature reduces to the form 

Oli(9, z ) =  TI~(P, z)--Tw =Cexp(--~z)~n(p), (23) 
To--Tw 

where 

C = 

Pl 1 

0 p~ 

O* 2 1 

0 0x 

For the bottom equation in Eqs. (19) the relative surplus temperature is 

(9,~(p, z ) =  F2 e x p (  F5 ) F$ ---~&Z ~ l i ( t O )  for z<Fr Fo. (24)  

The calculations made from Eq. (23) are in complete agreement with those made from Eq. (24). 
The results are shown in Fig. 1 for four different values of z. 

The solution of the nonstationary problem (in this case we have, in effect, a nonsta- 
tionary contact problem of heat conduction for a two-layered plate) is exactly the same as 
that obtained using the method of Kantorovich. The only difference is that in the expres- 
sion (20) the fk(z) is replaced by fk(Fo) (k = I, n). The solution of the nonstationary 
problem obtained by the author using the method of Kantorovich is, in the first approxi- 
mation, in complete agreement with the top expression in the equations (19). 

The approach outlined here can also be applied in solving symmetric problems in cylin- 
drical coordinates (for a tube-within-a-tube type heat exchanger). An expression for the 
flow rate in the intertube space is given in [2]. There is no change in the expressions for 
the coordinate functions. 

This method can also be used for multi-layered heat exchangers. The coordinate functions 
for heat exchangers with an arbitrary number of layers may be obtained from the following 
expressions (for boundary conditions of the form (5) and (8) and for junction conditions of 
the form (6) and (7)): 

,~-i ( X,n ;~,~ ) (1  2 i_ k,,~ ,. - - p ~ - k - 1 )  ' p 2 ) (i 1, m); (25)  ~li(P) :: Z [I --H(i + k--m)] ~m-~ km-k-1 --~-kt -- = 
k=0 

~Phi(0) = (9 ~" __ p 2 ) e ( p ,  pi-,2 )2[,-H(,-i)]p2(~-1) (i = 1, m; k = 2, n). (26)  

A solution of the form (15), written in terms of the coordinate functions obtained from 
the equations (25) and (26), satisfies the boundary conditions and the junction conditions 
for an arbitrary number of heat exchanger layers and for an arbitrary number of approxima- 
tions. 

Media velocity profiles in an arbitrary heat exchanger channel (plane-parallel channels) 
are determined from the following general expression: 

For  s y m m e t r i c  p r o b l e m s  w i t h  b o u n d a r y  c o n d i t i o n s  o f  t h e  t h i r d  k i n d  of  t h e  form 

0Tin(l, z, Fo) +Bim[Tm(1,  z, Fo)--Tex~ = 0 
0p 

the expression for the system of coordinate functions in the first approximation is 

( ) Bim § 2 Z,~ ~" P,n-k-i § (27)  q~ Bi,~ + ~  [ l - - H ( i + k - - m ) l  . 2 
h~-.O ~,tn--k 2bin--h--1 

;~ p~ ( i =  l, m), 
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where Bi m = ~mR/l m is the Blot number; ~m is the heat transfer coefficient between the last 
(m-th) layer of the heat exchanger and the medium that washes over it; Tex t is the temper- 
ature of the medium external to the heat exchanger. 

Coordinate functions for the successive approximations are obtained from Eq. (26). 

In this case, solutions of the form (15) and (20) are to be taken in the following forms: 

~ ( p ,  s, p) = T xt--bl(s, P)~I~(P) (i = l, m), (28) 

T~t(p, z ) =  ~xt---~[~(z)~h~(p) (i = 1, m). (29) 
h = l  

The expressions (28) and (29), with coordinate functions obtained from equations (26) and 
(27), satisfy the boundary conditions and all the junction conditions. The unknown coeffi- 
cients b1(s, p) and fk(z) are to be determined in such a way that the initial differential 
equations are satisfied in an optimum manner. For this purpose one can use the Bubnov-Ga- 
lerkin orthogonal method (for determining bl(s, p)) and the Kantorovich method (for deter- 
mining fk(z) (k = i, n). 

It should be pointed out in conclusion that the approach outlined here makes it possible 
to solve effectively heat exchange junction problems for boundary conditions varying in 
time and with respect to z, as well as for fluid temperatures at the channel entrances vary- 
ing with respect to p and with respect to the time, and for initial heat-carrier temperatures 
dependent on the coordinates p and z. 

NOTATION 

T, temperature; Til, TI2 , TI, initial temperatures; Tw, outer wall temperature; Text, 
temperature of external medium; Way , average velocity; x, r, longitudinal and transverse 
coordinates; ~, time; rl, r 2 = R, distances to inner and outer walls; p = r/R, dimensionless 
coordinate; a, smaller of the diffusivity coefficients a I and a2; Pe = 6RWav/a, Peclet num- 
ber; z = (i/Pe)x/R, dimensionless coordinate; Fo = aT/R 2, Fourier number; I, coefficient 
of thermal conductivity; m, number of heat exchanger layers; H(N), Heaviside function; ~, 
argument of Heaviside function; ~, heat transfer coefficient; Bi = aR/l, Blot number. 
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THE DYNAMICS OF THE FREEZING OVER OF UNDERGROUND PIPES 

B. A. Krasovitskii UDC 551o322:536.24:621.643 

The article suggests a method of calculating the unsteady process of freezing 
over of an underground pipe transporting a freezing liquid. 

Pipeline transport of water, aqueous solutions and suspensions under conditions of low 
ambient temperatures may be accompanied by their freezing. The formation of an ice layer 
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